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Abstract. This paper presents a novel scheme for controlling planar
multirobot formations. We assume the multirobot team’s overall motion
is guided by a subset of independently moving leader robots. We pro-
pose a strategy to control the other robots, called followers, based on
minimizing a distributed deformation cost. This cost is based on a team
organization in triads, i.e., three-robot subsets. Our strategy allows the
team to maintain a prescribed formation shape while maneuvering under
the leaders’ guidance during, e.g., collaborative object transport or navi-
gation tasks. We also study how to restrict the leaders’ dynamics to facil-
itate formation tracking by the followers under motion constraints. The
control laws we propose are distributed, can be designed locally, and rely
on relative position measurements only. We illustrate our scheme with
simulations considering single-integrator and unicycle robot dynamics.

Keywords: Multirobot systems · Deformation control · Mobile robots

1 Introduction

In various multirobot tasks such as object transport, navigation, and monitoring,
a relevant goal is to keep the multirobot team close to a prescribed shape. In this
paper, we propose a formation control strategy motivated by this goal. Formation
control techniques [1] seek to maintain a certain geometric pattern specified via,
e.g., relative inter-robot displacements [2], distances [3] or angular information
[4]. Often, the team is required to maintain the pattern while simultaneously
evolving dynamically according to task needs. To achieve this, a popular strategy
is to use formation control with leader robots [4, 5]. Typically, the leaders control
those team parameters not included in the formation specification, while the
other robots (followers) have to stay close to that specification. Leader robots
can generate, e.g., translation, rotation and scaling formation maneuvers, and
even enforce affine deformations [6–8]. One alternative is to execute maneuvers in
a leaderless fashion: for example, by purposeful design of the control parameters,
one can obtain a desired dynamical evolution of the formation [9].

The approach we propose here is built on the work [10]. In this prior study,
a team of robots grouped in sets of three (triads) achieved a prescribed planar
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formation up to translation, rotation and scaling. The control strategy consisted
in minimizing a distributed deformation cost. The proposed controller was lead-
erless, and the achieved formation was static. Here, in contrast, we present a
control scheme with multiple leaders that allows the formation to maneuver dy-
namically. This is a key capability in various tasks, as mentioned above. The
leaders’ motions, which dictate the formation’s translation, rotation and scaling,
are considered exogenous and not controlled by us. What we propose is a control
strategy for the followers, based on [10], which allows the full team to stay close
to the prescribed formation shape during maneuvering. The main new contents
we present are: (i) a characterization of how the positions of two leaders uniquely
specify a formation with the prescribed shape for the full team, (ii) control laws
for the followers so that they track that formation while minimizing team de-
formation, and (iii) a study on how to define dynamic bounds for the leaders to
facilitate tracking by the followers. Our control laws use relative position mea-
surements only, and are distributed and computable in local frames. We present
illustrative simulations with single-integrator and unicycle robots.

Other approaches closely related to ours are those based on a complex-valued
graph Laplacian, e.g., in [2, 6, 9, 11–13]. Analogously to [10], these studies propose
control laws for planar formations with translation, rotation and scaling degrees
of freedom. To fix these degrees of freedom, two leader robots are used in [13].
In [6], these two leaders are specifically employed to translate and resize the
formation, while [9] considers leaderless maneuvers. Compared to these works,
our controller minimizes deformation explicitly, which is a well-suited strategy for
shape control in, e.g., deformable object transport [14], and we study specifically
dynamic constraints from leaders to followers. The work [15] considers leader-
follower formations with triangulated graphs (related to our triad structuring),
but defines more restrictive graph conditions than us and a formation that cannot
be scaled. Affine maneuvering [8] enables translation, rotation, scaling, and also
affine deformation of a formation, which provides great maneuvering flexibility.
The problem we target here (shape control) is different, and we use fewer (two)
leaders; affine maneuvering requires at least three for a planar formation. Finally,
a key distinguishing feature, inherited from [10], is that our control laws can be
designed locally from geometric information: differently from [2, 6, 8, 9, 11–13],
we do not need a centralized design of a control/stress matrix.

2 Problem Definition

Let ⊗, 1n, In, || · ||, and (·)(m) denote respectively the Kronecker product, a
column vector of n ones, the n × n identity matrix, the Euclidean norm, and
the time derivative of order m. Let us consider a team of n > 2 robots in a
planar workspace, with indices in the set N = {1, ..., n}. We denote the team
configuration at time t by q(t) = [q⊺

1(t), ..., q
⊺
n(t)]

⊺ ∈ R2n where qi(t) ∈ R2

is robot i’s position. We will often omit (t), for brevity. We define a reference
formation for the team as a set of n constant positions, all different from one
another and, without loss of generality, having zero centroid. We stack them
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in c = [c⊺1 , ..., c
⊺
n]

⊺ ∈ R2n, where ci ∈ R2 denotes robot i’s position in the
reference formation. We model robot interconnections by an undirected static
graph G = (N , E). Each vertex corresponds to a robot, while an edge (i, j) in E
indicates that the control law of i uses j′s relative position, and viceversa.

Our goal is for the team to maintain what we call the shape condition [10]
while executing a collective motion task. This means that q is equal to c up to
translation, rotation and uniform scaling. Defining gq = [gqx, gqy]

⊺ ∈ R2 as the
centroid of q, the shape condition implies that there exists a matrix H having
the form H = [[h1, h2]

⊺, [−h2, h1]
⊺] ∈ R2×2 such that q can be expressed as

q = 1n ⊗ gq + (In ⊗H)c. (1)

Observe that (In⊗H)c is a rotation and uniform scaling of the zero-centroid ref-
erence formation c. To pursue the goal stated above, we build on the formulation
of [10]. This formulation uses a distributed deformation cost γd to measure team
shape error. This cost is defined as the sum of costs for triads, where a triad is
defined as a set of three robots with a graph edge in E between every pair. In
particular, G consists of interlaced triads and its structure satisfies the following
requirements: every robot belongs to at least one triad; every triad has at least
one other triad with which it shares two robots (we then say these two triads
are interlaced); and there is a path of successive interlacings between any two
triads. One possible structure complying with these requirements is a triangular
mesh: as an example, bottom-left of Fig. 1 displays a reference formation with
n = 14 robots and the edges of G for such a mesh; note that robots are labeled
as leaders or followers, as will be explained in the next section.

The motivation for using the described triad-based graph structure is, first,
that this can ensure shape convergence, i.e., convergence to a configuration sat-
isfying (1), when using gradient descent on γd. Moreover, this graph structure
has relevant advantages such as sparsity and modularity. We can express

γd = (−1/2)q⊺Adq, −∇qγd = Adq, (2)

where Ad ∈ R2n×2n is a constant symmetric negative semidefinite matrix that
encapsulates the reference formation and the triad structure. The Appendix
provides more details of the formulation in [10]. The shape control strategy used
in [10] was for the n robots to follow gradient descent on γd (2). This strategy was
leaderless and the final configuration of the team was static, and it depended on
the initial configuration. Here, we propose to use a similar shape control strategy,
but we allow the formation to simultaneously maneuver. We achieve this via a
leader-follower scheme, presented next.

3 Leader-Follower Control Scheme

We consider the team divided into nl ≥ 2 leaders and nf ≥ 1 followers, such
that nl+nf = n. Their sets of indices are defined as Nl = {1, ..., nl}, Nf = {nl+
1, ..., n}, respectively. We express q = [q⊺

l ,q
⊺
f ]

⊺ where ql and qf are respectively
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2nl × 1 and 2nf × 1 vectors containing the leader and follower positions. In this
paper, we do not address the control of the leaders’ motions, which are considered
exogenous. We focus on controlling the followers, which will run gradient descent
on γd (2). To formulate this, we will use a partition in blocks of Ad, as

Ad =

[
All Alf

Afl Aff

]
, i.e., Adq =

[
All Alf

Afl Aff

] [
ql

qf

]
. (3)

We assume the followers move according to single-integrator dynamics, i.e.,
q̇f (t) = uf (t), where uf (t) = [u⊺

nl+1(t), ..., u
⊺
n(t)]

⊺ ∈ R2nf is the control input
for the set of followers and ui(t) ∈ R2 is robot i’s control input.

3.1 Shape Control Conditions and Target Formation

Lemma 1. The shape condition (1) holds if and only if Adq = 0.

Proof. From [10, Lem. 2], the shape condition holds if and only if γd = 0. Note
that Adq = 0 implies γd = 0 (2). In addition, if γd = 0, as Ad is symmetric
negative semidefinite, the gradient of γd is zero, i.e., Adq = 0.

From this lemma, our control goal (1) is encapsulated by the constraintAdq = 0.
Hence, we will use this constraint to formulate our approach, relying on the
properties of Ad and of its submatrices. We can write (1) as a linear combination
of four linearly independent 2n vectors:

q = gqx(1n ⊗ [1, 0]⊺) + gqy(1n ⊗ [0, 1]⊺) + h1c+ h2Tc, (4)

where T = In ⊗ [[0, 1]⊺, [−1, 0]⊺]. Thus, from Lemma 1, the kernel of Ad has
dimension four, and the rank of Ad is 2n− 4. This same result was obtained in
[2, 6, 11, 12] for a matrix playing an analogous role to our Ad. For all subsequent
developments in this paper, we assume the following.

Assumption 1 Aff is nonsingular.

Analogous assumptions appear in related work on affine [8] or complex-Laplacian-
based [6, 13] formation control, and on manipulation using an analogous mod-
eling [16]. Considering the part of the right-hand side of Adq = 0 that corre-
sponds to the followers, we get, from (3), the constraint Aflql +Affqf = 0. If,
per Assumption 1, Aff is nonsingular, a given configuration ql of the leaders
defines a unique configuration for the followers that satisfies the above con-
straint. We name the unique positions in this configuration follower setpoints,
qdf = [q⊺

df(nl+1), ..., q
⊺
dfn]

⊺ ∈ R2nf . They are directly found as

qdf = −A−1
ff Aflql. (5)

We then define, similarly to [8], the target formation as q∗(t) = [ql(t)
⊺,qdf (t)

⊺]⊺ ∈
R2n. This is the unique team formation defined by the positions of the leaders
at time t. Thus, what Assum. 1 means is that the leaders can dictate the config-
uration of the formation. As Ad is symmetric negative semidefinite (Sec. 2), its
principal submatrices (which include Aff ) are also symmetric negative semidef-
inite [17]. Therefore, from Assumption 1, Aff is symmetric negative definite.
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Proposition 1. If nl = 2, the target formation always satisfies the shape condi-
tion (1). Moreover, the scaling factor of this formation relative to the reference
formation is nonzero if and only if the positions of the two leaders are different.

Proof. Consider q∗
c = [q∗⊺

cl ,q
∗⊺
cf ]

⊺ = Adq
∗; from Lem. 1, showing q∗

c = 0
will prove the result regarding the shape condition. Note q∗

cf = 0, from (5).

In addition, q∗
cl = (All − AlfA

−1
ff Afl)ql = (Ad/Aff )ql, where Ad/Aff is

the Schur complement of Aff in Ad. For nl = 2 and due to Assumption 1,
Aff has rank 2nf = 2n − 4. This is equal to the rank of Ad. Given that
rank(Ad) = rank(Aff ) + rank(Ad/Aff ) [17], Ad/Aff = 0; hence, q∗

cl = 0,
and q∗

c = 0. Next, we prove the result regarding the scaling factor. As (1) holds,
q∗ = 1n ⊗ gq + (In ⊗ H)c. Hence, for the two leaders’ positions in the target
formation we have q2−q1 = H(c2−c1) with H = [[h1, h2]

⊺, [−h2, h1]
⊺] ∈ R2×2.

The form of H implies that either H = 0 or H = shRh ̸= 0 with sh > 0 (scal-
ing), Rh ∈ SO(2) (rotation). As c2 − c1 ̸= 0, q2 − q1 ̸= 0 implies H ̸= 0, and
H ̸= 0 implies q2 − q1 ̸= 0.

Prop. 1 means two leaders, at any two different positions, always define a target
formation that has the shape of the reference formation. This is not the case if
nl > 2: the target formation may then be deformed. Note as well that Assum. 1
cannot hold if nl = 1: this would imply rank(Aff ) = 2n−2, which is impossible
because rank(Ad) = 2n−4 and Aff is a submatrix of Ad. Let us take nl = 2 and
group the parameters of (4) for the target formation as w = [gqx, gqy, h1, h2]

⊺

∈ R4. Let S = [[0, 1]⊺, [−1, 0]⊺] and recall that c1, c2 are the leaders’ positions
in c. Next, we show how the leader positions ql determine w.

Proposition 2. For nl = 2, we have w = F−1ql with F ∈ R4×4 having the
form F = [[I2, I2]

⊺, [c⊺1 , c
⊺
2 ]

⊺, [(Sc1)
⊺, (Sc2)

⊺]⊺].

Proof. The w of the target formation for positions ql = [q⊺
1 ,q

⊺
2 ]

⊺ is found by
imposing (4) on these positions. This can be expressed as Fw = ql. One can
find that det(F) = det([c21,Sc21]) = ||c21||2, where c21 = c2 − c1. Hence, F is
nonsingular, and w = F−1ql.

This shows that by controlling their positions ql, the leaders can directly control
w and thus maneuver (i.e., translate, rotate and resize) the target formation.
Typically, the leaders are highly capable robots with detailed knowledge of the
mission. The role of the leaders in our scheme may also be played by non-robotic
entities (e.g., humans); this can be of interest in certain application scenarios.

3.2 Control Laws for the Followers

The followers’ goal is to continuously track their setpoints qdf (t). For this, we
can use the gradient descent control employed for the full team in [10]. Here we
use it only for the followers. The control law, with a positive scalar gain kP , is

uf = −kP∇qf
γd = kP (Aflql +Affqf ). (6)
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Proposition 3. Under (6), if the leaders are static, the positions of the follow-
ers converge globally to their setpoints.

Proof. Let us define the tracking error as

ef = qf − qdf = qf +A−1
ff Aflql. (7)

Multiplying by Aff , we have Affqf+Aflql = Affef . In addition, as the leaders
are static, q̇df = 0. Hence, ėf = q̇f . We can then substitute the control (6) to
find ėf = kPAffef . As Aff is symmetric negative definite, ef converges to zero
globally, i.e., qf converges globally to qdf .

With persistent leader motions, the control law (6) will produce a non-vanishing
tracking error ef , which can be reduced by increasing the value of kP . To further
improve tracking performance, we can use an integral term, z, with a similar
structure to those in, e.g., [6, 8, 11]. Concretely, we propose the control

uf = kP (Aflql +Affqf ) + kIz, with kP > 0 ∈ R, kI > 0 ∈ R, (8)

ż = Aflql +Affqf . (9)

Proposition 4. Under (8)-(9), if the leaders move with constant velocity, the
positions of the followers converge globally to their setpoints.

Proof. We can use again the tracking error ef = qf −qdf = qf +A−1
ff Aflql and

the fact that Affqf+Aflql = Affef . The constant leader velocities q̇l represent
a constant velocity of the follower setpoints: q̇df = −A−1

ff Aflq̇l. We have[
ėf
ż

]
=

[
kPAff kII2nf

Aff 02nf×2nf

]
︸ ︷︷ ︸

API

[
ef
z

]
+

[
−q̇df

02nf×1

]
. (10)

Using properties of determinants of block matrices, the characteristic equation
of API is det(λ2I2nf

− λkPAff − kIAff ) = 0. Following [11, Thm. 3, Cor. 1]
where a similar system is analyzed, the eigenvalues λ of API are the solutions
of the equations λ2 − kPµjλ − kIµj = 0, where µj for j ∈ {1, ..., 2nf} are the
eigenvalues of Aff . As Aff is symmetric negative definite, all µj are real and
negative. From the Routh-Hurwitz criterion, all λ have negative real parts and the
dynamics is stable. Hence, the system converges to a steady-state regime where

kPAffef + kIz− q̇df = 02nf×1, (11)

Affef = 02nf×1. (12)

As Aff is nonsingular, (12) implies ef = 0, concluding the proof.

Implementation of the Control. The requirements we pose on the followers
are not high; in particular, note that the control laws (6), (8)-(9) are: (i) Dis-
tributed, i.e., each follower only needs to measure the relative positions of its
neighbors in G. (ii) Computed from position measurements only; using velocity
feedback would improve tracking performance, but also increase complexity. (iii)
Implementable by every follower using the measurements expressed in its own
reference frame; we refer to the arguments on this last point given in [8, 10].



Maneuvering formation control based on deformation minimization 7

3.3 Analysis of Leader-to-Follower Dynamics

From (5), leader positions and follower setpoints are related as

qdf = Mflql, with Mfl = −A−1
ff Afl, (13)

where we call the constant matrix Mfl of size 2nf ×2nl the mapping matrix. We
are interested in analyzing the leader-to-follower dynamics: i.e., how the follower
setpoints change when the leaders move. This was addressed in [16] for first-

order dynamics. Clearly, for any m ∈ N, we have q
(m)
df = Mflq

(m)
l . Hence, the

leader-to-follower dynamic relation is determined by the mapping matrix Mfl.
We study the structure of this matrix next. Consider the class of 2 × 2 real
matrices having equal diagonal entries and opposite off-diagonal entries, i.e.,

M =

[
m1 −m2

m2 m1

]
, with m1, m2 ∈ R. (14)

Any M ̸= 0 is a shape-preserving transformation that performs rotation and
resizing and can be expressed as M = sR, with s > 0 being a scaling factor
and R ∈ SO(2) a rotation. Next, we define a relevant class of matrices based on
(14). We will use this definition in our subsequent analysis.

Definition 1. We call a matrix of real numbers P of size 2k × 2l, k ≥ 1, l ≥ 1
an RRM if, when partitioned in kl blocks Pij of size 2 × 2, i ∈ {1, ..., k},
j ∈ {1, ..., l}, i.e., P = [[P⊺

11, ...,P
⊺
k1]

⊺, ..., [P⊺
1l, ...,P

⊺
kl]

⊺ ], every Pij is a matrix
of the class defined by (14).

RR- in the name RRM alludes to Rotate and Resize, the operations done by the
blocks. The following two lemmas can be proved with standard manipulations.

Lemma 2. A linear combination or product of two RRMs is an RRM.

Lemma 3. Ad is an RRM.

Note All, Alf , Afl and Aff are also RRMs, since they are all formed by blocks
of Ad defined as the Pij in Definition 1. The result on Mfl is presented next.

Proposition 5. The mapping matrix Mfl is an RRM.

Proof. Recall Mfl = −A−1
ff Afl. The core element of our proof is showing A−1

ff

is an RRM, which we will do by considering incrementally larger submatrices
of Aff . For this, denote by Ai, i ∈ {1, ..., nf} the principal submatrix of Aff

built from its first 2i rows and columns. Note that as Aff is symmetric negative
definite, all Ai are symmetric negative definite [17], i.e., nonsingular. In addi-
tion, all Ai are RRMs, as they consist of blocks of Aff selected consistently with
Definition 1. Note as well that for any nonsingular 2× 2 RRM, its inverse is a
2 × 2 RRM. We can directly apply this to the 2 × 2 top-left corner submatrix,
A1. If nf > 1, we next consider the 4 × 4 matrix A2. We partition it using B,
C and D all of size 2× 2, and then express its inverse as [18]

A2 =

[
A1 B
C D

]
, A−1

2 =

[
A211 A212

A221 A222

]
, with (15)
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A211= A−1
1 +A−1

1 B(D−CA−1
1 B)−1CA−1

1 , A212= −A−1
1 B(D−CA−1

1 B)−1,

A221 = −(D−CA−1
1 B)−1CA−1

1 , A222 = (D−CA−1
1 B)−1. (16)

Note all inverses in the four equations (16) exist. This is because A2 and A1

are nonsingular, and hence the Schur complement A2/A1 = D − CA−1
1 B is

also nonsingular [18]. Recall that A−1
1 is an RRM. B, C and D are also RRMs,

as they come from blocks of Aff selected consistently with Definition 1. Hence,
A2/A1, a linear combination of products of RRMs, is an RRM too per Lemma 2.
Therefore, A2/A1 is a nonsingular 2×2 RRM. Hence, as seen above, (A2/A1)

−1

is an RRM. Therefore, equations (16) are linear combinations of products of
RRMs, so they are RRMs per Lemma 2, and hence, A−1

2 in (15) is an RRM.
If nf > 2, we repeat the procedure for j = 3, ..., nf defining Aj in step j from

Bj, Cj and Dj of respective sizes 2(j − 1)× 2, 2× 2(j − 1) and 2× 2, as

Aj =

[
Aj−1 Bj

Cj Dj

]
. (17)

By induction, we reach step j = nf , for which Aj = Aff . Hence, A
−1
ff is an

RRM. Since Afl is an RRM, Mfl = −A−1
ff Afl is an RRM per Lemma 2.

3.4 Imposing Dynamic Bounds

Let us interpret Mfl as partitioned in nfnl blocks of size 2 × 2 and denote
by Mij the block corresponding to follower i ∈ Nf and leader j ∈ Nl. As the
mapping matrix Mfl is an RRM (Prop. 5), we can express every nonzero Mij

as Mij = sijRij with sij > 0 and Rij ∈ SO(2). Let us denote the maximum

scaling by s̄ij = maxij sij . Recall q
(m)
df = Mflq

(m)
l . We have the following result.

Proposition 6. For m ∈ N, if leader dynamics satisfy ||q(m)
i (t)|| ≤ q̄lm(t) ∀i ∈

Nl, then follower setpoint dynamics satisfy ||q(m)
dfi (t)|| ≤ nls̄ij q̄lm(t) ∀i ∈ Nf .

Proof. For any possible Mfl with the considered block structure, we have for any
follower i ∈ Nf that

q
(m)
dfi =

∑
j∈Nl

Mijq
(m)
j =

∑
j∈Nl,Mij ̸=0

sijRijq
(m)
j . (18)

As ||Rijq
(m)
j || = ||q(m)

j || ≤ q̄lm and sij ≤ s̄ij, the stated result follows.

Prop. 6 gives us a way of facilitating tracking when the followers have significant
motion constraints (e.g., saturation and nonholonomicity), by prescribing bounds
on the dynamics of their setpoints. Suppose we want to prescribe the bounds

||q(m)
dfi (t)|| ≤ q̄dfm ∀i ∈ Nf , ∀t ≥ 0, with m ∈ N, (19)

for a chosen q̄dfm. We then have a result following immediately from Prop. 6.

Corollary 1. If the leader dynamics satisfy ||q(m)
i (t)|| ≤ q̄dfm/(nls̄ij) ∀i ∈ Nl,

∀t ≥ 0, the bounds (19) are satisfied.

Hence, we can choose q̄dfm based on the followers’ motion constraints, and then
ensure (19) is respected by imposing on the leaders the bounds of Cor. 1.
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4 Simulation Examples

We test the controller (8)-(9) in two MATLAB simulation examples. In both
cases, we define the graph G as a Delaunay triangulation of the reference for-
mation. This is a commonly used mesh structure that conforms with the triad
interlacing we require. In the first example, illustrated in Fig. 1, we consider four-
teen robots in a circular formation. Two leaders, using their knowledge of the
mission and of the environment, translate the formation while also performing
resizing (which allows traversing a narrow passage) and rotation. We consider
single-integrator kinematics for the followers, with velocity norm saturation of
1m/s. To illustrate Cor. 1 numerically for this example, assume we prescribe
the bounds (19) with q̄df1 = 1m/s to ensure the setpoints cannot change faster
than the followers can move. From Mfl, we can compute s̄ij = 1.611. Then,

Cor. 1 guarantees that if the leaders satisfy the condition ||q(1)
i (t)|| ≤ 0.310m/s

∀i ∈ Nl ∀t ≥ 0, then the prescribed bounds are satisfied. Note that the leader
velocities conform with this condition, as their maximum norm over time is
0.3m/s. Computing the setpoint velocities during the task, we confirm that

maxi,t ||q(1)
dfi(t)|| = 0.331m/s < q̄df1. Observe that the followers track their for-

mation setpoints driving the error ef towards zero in the segments where the
leader velocities remain constant, as theoretically expected.

Fig. 1. Simulation results for the first example. Top: robot paths showing several inter-
mediary team configurations with time stamps. The axes units are meters. A narrow
passage appears at around x = 25m. Bottom, from left to right: legend for the plot on
top, tracking error norm, and robot velocity norms, where dashed lines correspond to
the leaders and solid lines correspond to the followers.
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Fig. 2. Simulation results for the second example. On top row, from the left: initial
configuration, intermediary configuration at t = 49.5 s, and final configuration. The
robot paths are also displayed. The size of the arena is 2m × 3.2m. The legend for
these three plots is shown on the rightmost plot. Bottom, from left to right: unicycle
velocities of the followers, tracking error norm, and leader velocity norms.

The second example, illustrated in Fig. 2, is executed on robots with unicycle
kinematics in the MATLAB simulator of the Robotarium [19]. We use our single-
integrator control law (8)-(9) which is converted to the linear and angular unicy-
cle velocities [19]. Moreover, saturation of these velocities is considered. We define
leader trajectories that translate, rotate, and resize the formation. The unicy-
cle constraints make it more difficult for the followers to accurately track their
setpoints, especially under sharp changes in the leaders’ velocities. Still, a con-
vergence behavior of ef similar to the first example is observed. This second ex-
ample thus illustrates the applicability of the proposed approach on robots with
unicycle kinematics. Finally, we illustrate Prop. 6 in this example. We can take

q̄l1(t) = 0.06m/s ∀t ≥ 0. As s̄ij = 1.918, Prop. 6 ensures ||q(1)
dfi(t)|| ≤ 0.230m/s

∀i ∈ Nf ∀t ≥ 0. This is satisfied, as maxi,t ||q(1)
dfi(t)|| = 0.090m/s.

5 Conclusion

We presented a leader-follower controller to keep a team close to a reference
formation shape while the team translates, rotates and changes its size during a
mission. Our approach is simple in its design and implementation, and has inter-
esting shape control properties. Topics of future work include higher-order robot
dynamics, collision avoidance, and robustness to switching graph topologies.
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Appendix: Formation Control From Triad-Based
Deformation Cost

In [10], a deformation cost is defined for every triad in G. This cost is the squared
difference between current positions and optimally (in least-squares sense) trans-
lated, rotated and scaled reference positions for the three robots. γd is the ag-
gregate of such costs. The control law for every robot i ∈ N follows the negative
gradient of γd, as explained next. Denote by Tk a triad of index k, and by NT
the set of all such indices. Let N i

T ⊆ NT denote the set of indices of those triads
that robot i belongs to. Further, let q0k and c0k denote the centroids for the
triad Tk: i.e., the centroids of the positions in q and in c of the three robots that
form the triad Tk. Then, considering robots with single-integrator kinematics,
the control law ui for robot i expressed in geometric terms is as follows [10]:

ui = q̇i =
∑

k∈N i
T

Hk(ci − c0k)− (qi − q0k), ∀i ∈ N . (20)

Hk ∈ R2×2 is the optimal rotation and scaling transformation of the reference
positions for Tk, while the optimal translation component is handled by the
centroid subtraction done in (20). In 2D, Hk is linear in q; as a result, γd and
its gradient have the simple expressions (2). The full team control law can thus
be expressed as u = q̇ = −∇qγd = Adq. Recalling T = In ⊗ [[0, 1]⊺, [−1, 0]⊺],
Ad is expressed as follows, using Ak, Lk of size 2n× 2n, Lgk of size n× n:

Ad =
∑

k∈NT

Ak, Ak =
Lk(cc

⊺ +Tcc⊺T⊺)Lk

c⊺Lkc
− Lk, (21)

Lk = Lgk ⊗ I2, Lgk[i, j] =


2/3, if i = j & i ∈ Tk
−1/3, if i ̸= j & i, j ∈ Tk
0, otherwise.

This control law is distributed: robot i needs to measure the relative positions of
only those robots in triads that i belongs to. Also, i can express these measure-
ments in its own reference frame, and the control law can be designed locally
from geometric information, as shown by the expression (20).
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sensus with prescribed convergence time for multileader formation tracking. IEEE
Control Syst. Lett. 6, 3014–3019 (2022)

6. Han, Z., Wang, L., Lin, Z., Zheng, R.: Formation control with size scaling via a
complex Laplacian-based approach. IEEE Trans. Cybern. 46(10), 2348–2359 (2016)

7. Oh, K.K., Ahn, H.S.: Leader-follower type distance-based formation control of a
group of autonomous agents. Int. J. Control Automat. Syst. 15, 1738–1745 (2017)

8. Zhao, S.: Affine formation maneuver control of multiagent systems. IEEE Trans.
Autom. Control 63(12), 4140–4155 (2018)

9. Garcia de Marina, H.: Distributed formation maneuver control by manipulating
the complex Laplacian. Automatica 132, 109813 (2021)
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